-
高增益、大帶寬,為什么電路還會發(fā)生振蕩?
在之前“高增益、高帶寬,如何兩者兼得?”一文中,我們探討了如何在實現(xiàn)高增益和高帶寬的同時還能保持足夠高的信噪比 (SNR)。這篇文章里我們將更加詳細地討論實施方法和可能發(fā)生的問題。
2020-05-18
高增益 大帶寬 振蕩
-
高增益與高帶寬如何兼得?
由于我們必須采用多個功率級,因而同時實現(xiàn)高增益(1000 - V/V乃至更高)和高帶寬(數(shù)十 MHz)可能是一種挑戰(zhàn)。除了高增益、高帶寬方面的電路要求,還需要重點關注噪聲和穩(wěn)定性問題。
2020-05-18
放大器 高增益 高帶寬 噪聲
-
干貨 | 量子雷達的概要
歷經(jīng) 70 余年的發(fā)展,雷達技術在理論、體制、實現(xiàn) 方法及技術應用等方面都已取得了很大的進展。但近年來,傳統(tǒng)雷達探測性能已接近經(jīng)典物理學極限,如何進一步提升雷達系統(tǒng)性能成為了困擾科技人員的難題。
2020-05-15
量子雷達 雷達 存儲器
-
如何減小共模輻射電磁干擾?
共模輻射是由于接地電路中存在電壓降(如下圖),某些部位具有高電位的共模電壓,當外接電纜與這些部位連接時,就會在共模電壓激勵下產(chǎn)生共模電流,成為輻射電場的天線。這多數(shù)是由于接地系統(tǒng)中存在電壓降所造成的。共模輻射通常決定了產(chǎn)品的輻射性能。
2020-05-14
共模輻射 電磁干擾
-
汽車級MEMS振蕩器或?qū)砀锩酝黄?/span>
新技術取代成熟技術通常能夠帶來功能上的突破。在過去的50多年里,半導體行業(yè)一直都在追求更小的尺寸、更快的速度以及更便宜的價格(和/或更高的性能以及可靠性等)。而現(xiàn)如今,汽車應用中的數(shù)字電路則對時序要求非常高,相比過去對于微機電系統(tǒng)(MEMS)振蕩器呈現(xiàn)出極大的需求。本文將討論各類汽車...
2020-05-14
汽車級 MEMS振蕩器
-
射頻PA+FEM導雜散差的原因分析
射頻 PA+FEM 加上屏蔽罩的傳導雜散更差(DCS 的二三次諧波),不知是何原因,請賜教!
2020-05-13
射頻PA FEM 輻射
-
比較器的振蕩來自何處?
比較器是一個簡單的概念-在輸入端對兩個電壓進行比較。輸出為高或者低。因此,在轉(zhuǎn)換的過程中為什么存在振蕩?
2020-05-13
比較器 振蕩
-
TI毫米波傳感器:邊緣智能化為自主工廠提供動力
從傳統(tǒng)的工業(yè)機器人系統(tǒng)到當今最新的協(xié)作機器人,各類機器人都依賴于能夠生成和處理大量高度變化數(shù)據(jù)的傳感器。這些數(shù)據(jù)可用于啟用能夠做出實時決策的自主機器人,從而實現(xiàn)更智能的事件管理,同時在動態(tài)的真實環(huán)境中保持生產(chǎn)力。
2020-05-13
TI 毫米波傳感器 邊緣智能化
-
如何調(diào)整用過線性電位計作為音量控制器的音量?
你曾用過線性電位計作為音量控制器嗎?如果你使用過,你可能會發(fā)現(xiàn),音量跳變得非??臁H绻雽⒁袅空{(diào)整得相當小,你可能需要safe-cracker般的靈敏觸覺。這時就需要對數(shù)電位計。
2020-05-11
線性電位計 音量控制器 音量
- 智能終端的進化論:邊緣AI突破能耗與安全隱私的雙重困局
- 水泥電阻技術深度解析:選型指南與成本對比
- 滑動分壓器的技術解析與選型指南
- 如何通過 LLC 串聯(lián)諧振轉(zhuǎn)換器優(yōu)化LLC-SRC設計?
- 超聲波清洗暗藏"芯片密碼":二氧化硅顆粒撞擊機理揭秘
- 運動追蹤+沖擊檢測雙感知!意法半導體微型AI傳感器開啟智能設備新維度
- 線繞電阻與金屬氧化物電阻技術對比及選型指南
- 拓撲優(yōu)化:解鎖電池供電設備高效設計密碼
- 鋁殼電阻技術解析:原理、優(yōu)勢與產(chǎn)業(yè)生態(tài)全景
- 厚膜電阻在消費電子電源管理及家電控制中的技術應用與創(chuàng)新
- 從光伏到充電樁,線繞電阻破解新能源設備浪涌防護難題
- GMSL雙模解析:像素模式和隧道模式如何突破傳輸瓶頸
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall